Authors: | Morrissey, CA; Bendell-Young, LI; Elliott, JE |
Year: | 2005 |
Journal: | Environmental Science & Technology 39: 8090-8098 |
Title: | Identifying sources and biomagnification of persistent organic contaminants in biota from mountain streams of southwestern British Columbia, Canada |
Abstract: | We assessed whether biota occupying mountain streams accumulate and biomagnify remotely derived organic pollutants originating from atmospheric inputs to snowpack and glacial runoff and from marine sources introduced by migrating anadromous salmon. Several persistent organic pollutants including polychlorinated biphenyls (PCBs), p,p'-dichloro-diphenyl-dichloroethylene, hexachlorobenzene, and trans-nonachlor were commonly detected in benthic invertebrates, salmon fry (Oncorhynchus spp.), and eggs of an aquatic passerine, the American dipper (Cinclus mexicanus) from the Chilliwack River watershed, British Columbia, Canada. Total PCBs and several organochlorines (M) biomagnified from benthic invertebrate composites to salmon fry to dipper eggs. Invertebrate samples generally did not differ significantly in contaminant burdens between the river main stem where salmon are more abundant and higher-elevation tributaries where the salmon density is lower. Concentrations of total OCs and total PCBs in dipper eggs were positively related to drainage basin area and collection year but not to elevation. No differences in PCB congener patterns existed between dipper egg samples from the Chilliwack watershed and other watersheds in southwestern British Columbia. However, principal component analysis revealed significant spatial differences in egg PCB congener patterns between the main Chilliwack River and the higher-elevation tributaries. This difference was primarily due to a greater occurrence of lower chlorinated PCB congeners (66 and 105) in dipper eggs collected from the tributaries and higher loadings of the more stable and persistent congeners (153, 138, 130, and 128) in eggs from the river main stem. The results suggest that atmospheric sources are the main contributor of contaminants detected in biota from the region and that biomagnification is a common pathway for accumulation in lotic predators such as the American dipper. |
Please send suggestions for improving this publication database to
sass-support@sfu.ca.
Departmental members may update their publication list.