Organization of Xylan Production in the Golgi During Secondary Cell Wall Biosynthesis


Back to previous page
Authors: Meents, MJ; Motani, S; Mansfield, SD; Samuels, AL
Year: 2019
Journal: Plant Physiol. 181: 527-546   Article Link (DOI)  PubMed
Title: Organization of Xylan Production in the Golgi During Secondary Cell Wall Biosynthesis
Abstract: Secondary cell wall (SCW) production during xylem development requires massive up-regulation of hemicellulose (e.g. glucuronoxylan) biosynthesis in the Golgi. Although mutant studies have revealed much of the xylan biosynthetic machinery, the precise arrangement of these proteins and their products in the Golgi apparatus is largely unknown. We used a fluorescently tagged xylan backbone biosynthetic protein (IRREGULAR XYLEM9; IRX9) as a marker of xylan production in the Golgi of developing protoxylem tracheary elements in Arabidopsis (Arabidopsis thaliana). Both live-cell confocal and transmission electron microscopy (TEM) revealed SCW deposition is accompanied by a significant proliferation of Golgi stacks. Furthermore, although Golgi stacks were randomly distributed, the organization of the cytoplasm ensured their close proximity to developing SCWs. Quantitative immuno-TEM revealed IRX9 is present in a specific subdomain of the Golgi stack and was most abundant in the ring of the inner margins of medial cisternae where fenestrations are abundant. Conversely, the xylan product accumulated in swollen trans cisternal margins and the Trans-Golgi network (TGN). The irx9 mutant lacked this expansion for both the cisternal margins and the TGN, whereas Golgi stack proliferation was unaffected. Golgi in irx9 also displayed dramatic changes in their structure, with increases in cisternal fenestration and tubulation. Our data support a new model where xylan biosynthesis and packaging into secretory vesicles are localized in distinct structural and functional domains of the Golgi. Rather than polysaccharide biosynthesis occurring in the center of the cisternae, IRX9 and the xylan product are arranged in successive concentric rings in Golgi cisternae.
Back to previous page
 

Please send suggestions for improving this publication database to sass-support@sfu.ca.
Departmental members may update their publication list.