Evolutionary medical insights into the SARS-CoV-2 pandemic


Back to previous page
Authors: Crespi, B
Year: 2020
Journal: Evol. Med. Public Health : 314-322   Article Link (DOI)  PubMed
Title: Evolutionary medical insights into the SARS-CoV-2 pandemic
Abstract: The author apply concepts and tools from evolutionary medicine to understanding the SARS-CoV-2 pandemic. The pandemic represents a mismatched conflict, with dynamics and pathology apparently driven by three main factors: (i) bat immune systems that rely on low inflammation but high efficacy of interferon-based defenses; (ii) viral tactics that differentially target the human interferon system, leading to substantial asymptomatic and pre-symptomatic transmission; and (ii) high mortality caused by hyper-inflammatory and hyper-coagulatory phenotypes, that represent dysregulated tradeoffs whereby collateral immune-induced damage becomes systemic and severe. This framework can explain the association of mortality with age (which involves immune life-history shifts towards higher inflammation and coagulation and reduced adaptive immunity), and sex (since males senesce faster than females). Genetic-risk factors for COVID-19 mortality can be shown, from a phenome-wide association analysis of the relevant SNPs, to be associated with inflammation and coagulation; the phenome-wide association study also provides evidence, consistent with several previous studies, that the calcium channel blocking drug amlodipine mediates risk of mortality. Lay Summary: SARS-CoV-2 is a bat virus that jumped into humans. The virus is adapted to bat immune systems, where it evolved to suppress the immune defenses (interferons) that mammals use to tell that they are infected. In humans, the virus can apparently spread effectively in the body with a delay in the production of symptoms and the initiation of immune responses. This delay may then promote overactive immune responses, when the virus is detected, that damage the body as a side effect. Older people are more vulnerable to the virus because they are less adapted to novel infectious agents, and invest less in immune defense, compared to younger people. Genes that increase risk of mortality from SARS-CoV-2 are functionally associated with a drug called amlodipine, which may represent a useful treatment.
Back to previous page
 

Please send suggestions for improving this publication database to sass-support@sfu.ca.
Departmental members may update their publication list.