A study of the lethal and sublethal toxicity of polyphase P-100, an antisapstain fungicide containing 3-iodo-2-propynyl butyl carbamate (IPBC), on fish and aquatic invertebrates


Back to previous page
Authors: Farrell, AP; Stockner, E; Kennedy, CJ
Year: 1998
Journal: Archives of Environmental Contamination and Toxicology 35: 472-478
Title: A study of the lethal and sublethal toxicity of polyphase P-100, an antisapstain fungicide containing 3-iodo-2-propynyl butyl carbamate (IPBC), on fish and aquatic invertebrates
Abstract: The acute toxicity of Polyphase P-100, an antisapstain wood preservative that contains 97% 3-iodo-2-propynyl butyl carbamate (IPBC), was determined for three species of fish (coho salmon, rainbow trout, and starry flounder) and three species of aquatic invertebrates (Daphnia magna, Hyalella azteca, and Neomysis mercedis). The 96-h LC50 values for the various fish species exposed to Polyphase P-100 ranged from 95 ppb for coho smelts (Oncorhynchus kisutch) to 370 ppm for juvenile starry flounder (Platichthys stellatus). The sensitivity of coho to Polyphase P-100 was altered by their developmental stage. Coho embryos were six to nine times more tolerant of Polyphase P-100 than coho alevins, which were twice as tolerant as coho smelts. The 48-h LC50 values for the invertebrates D. magna, H. azteca, and N. mercedis were 40 ppb, 500 ppb, and 2,920 ppb, respectively. In addition to a wider range of sensitivity to Polyphase P-100 compared with the fish species, the invertebrate species were characterized by a shallower concentration-response. In acute, 24-h sublethal tests with juvenile starry flounder and rainbow trout, there was no primary or secondary stress response (changes in hematocrit, leucocrit, hemoglobin concentration, plasma lactate concentration, and plasma cortisol concentration) at concentrations up to 50% of the 96-h LC50 value. The acute toxicity of a 1:8 mixture of Polyphase P-100 and Bardac 2280 (another antisapstain compound that contains didecyldimethylammonium chloride [DDAC] as the active ingredient) was close to additive for fish, but not for invertebrate species. The acute toxicity of the mixture was seven to eight times more than additive for H. azteca, but two to three times less than additive for D. magna. Some sublethal stress responses were revealed with the mixture that were not observed with the test chemicals alone.
Back to previous page
 

Please send suggestions for improving this publication database to sass-support@sfu.ca.
Departmental members may update their publication list.