Approach trajectory and solar position affect host plant attractiveness to the small white butterfly


Back to previous page
Authors: Blake, AJ; Couture, S; Go, MC; Gries, G
Year: 2021
Journal: Vision Res. 186: 140-149   Article Link (DOI)  PubMed
Title: Approach trajectory and solar position affect host plant attractiveness to the small white butterfly
Abstract: While it is well documented that insects exploit polarized sky light for navigation, their use of reflected polarized light for object detection has been less well studied. Recently, we have shown that the small white butterfly, Pieris rapae, distinguishes between host and non-host plants based on the degree of linear polarization (DoLP) of light reflected from their leaves. To determine how polarized light cues affect host plant foraging by female P. rapae across their entire visual range including the ultraviolet (300-650 nm), we applied photo polarimetry demonstrating large differences in the DoLP of leaf-reflected light among plant species generally and between host and non-host plants specifically. As polarized light cues are directionally dependent, we also tested, and modelled, the effect of approach trajectory on the polarization of plant-reflected light and the resulting attractiveness to P. rapae. Using photo polarimetry measurements of plants under a range of light source and observer positions, we reveal several distinct effects when polarized reflections are examined on a whole-plant basis rather than at the scale of pixels or plant canopies. Most notably from our modeling, certain approach trajectories are optimal for foraging butterflies, or insects generally, to discriminate between plant species on the basis of the DoLP of leaf-reflected light.
Back to previous page
 

Please send suggestions for improving this publication database to sass-support@sfu.ca.
Departmental members may update their publication list.