Evidence for Elevation-Dependent Warming in the St. Elias Mountains, Yukon, Canada


Back to previous page
Authors: Williamson, SN; Zdanowicz, C; Anslow, FS; Clarke, GKC; Copland, L; Danby, RK; Flowers, GE; Holdsworth, G; Jarosch, AH; Hik, DS
Year: 2020
Journal: J. Clim. 33: 3253-3269   Article Link (DOI)
Title: Evidence for Elevation-Dependent Warming in the St. Elias Mountains, Yukon, Canada
Abstract: The climate of high midlatitude mountains appears to be warming faster than the global average, but evidence for such elevation-dependent warming (EDW) at higher latitudes is presently scarce. Here, we use a comprehensive network of remote meteorological stations, proximal radiosonde measurements, downscaled temperature reanalysis, ice cores, and climate indices to investigate the manifestation and possible drivers of EDW in the St. Elias Mountains in subarctic Yukon, Canada. Linear trend analysis of comprehensively validated annual downscaled North American Regional Reanalysis (NARR) gridded surface air temperatures for the years 1979-2016 indicates a warming rate of 0.028 degrees C a(-1) between 5500 and 6000 m above mean sea level (MSL), which is similar to 1.6 times larger than the global-average warming rate between 1970 and 2015. The warming rate between 5500 and 6000 m MSL was similar to 1.5 times greater than the rate at the 2000-2500 m MSL bin (0.019 degrees C a(-1)), which is similar to the majority of warming rates estimated worldwide over similar elevation gradients. Accelerated warming since 1979, measured by radiosondes, indicates a maximum rate at 400 hPa (similar to 7010 m MSL). EDW in the St. Elias region therefore appears to be driven by recent warming of the free troposphere. MODIS satellite data show no evidence for an enhanced snow albedo feedback above 2500 m MSL, and declining trends in sulfate aerosols deposited in high-elevation ice cores suggest a modest increase in radiative forcing at these elevations. In contrast, increasing trends in water vapor mixing ratio at the 500-hPa level measured by radiosonde suggest that a longwave radiation vapor feedback is contributing to EDW.
Back to previous page
 

Please send suggestions for improving this publication database to sass-support@sfu.ca.
Departmental members may update their publication list.