Plasticity in the adrenocortical response of a free-living vertebrate: The role of pre- and post-natal developmental stress


Back to previous page
Authors: Love, OP; Williams, TD
Year: 2008
Journal: Hormones and Behavior 54: 496-505   Article Link (DOI)
Title: Plasticity in the adrenocortical response of a free-living vertebrate: The role of pre- and post-natal developmental stress
Abstract: Optimal functioning of the hypothalamo-pituitary-adrenal (HPA) axis is paramount to maximizing fitness in vertebrates. Research in laboratory mammals has suggested that maternally-induced stress can cause significant variation in the responsiveness of an offspring's HPA axis involving both pre- and post-natal developmental mechanisms. However, very little is known regarding effects of maternal stress on the variability of offspring adrenocortical functioning in free-living vertebrates. Here we use an experimental approach that independently lowers the quality of both the pre- and post-natal developmental environment to examine programming and plasticity in the responsiveness of the HPA axis in fledglings of a free-living passerine, the European starling (Sturnus vulgaris). We found that mimicking a hormonal signal of poor maternal condition via an experimental prenatal increase in yolk corticosterone decreased the subsequent responsiveness of the HPA axis in fledglings. Conversely, decreasing the quality of the post-natal developmental environment (by decreasing maternal provisioning capability via a maternal feather-clipping manipulation) increased subsequent responsiveness of the HPA axis in fledglings, apparently through direct effects on nestling body condition. The plasticity of these responses was sex-specific with smaller female offspring showing the largest increase in HPA reactivity. We suggest that pre-natal, corticosterone-induced, plasticity in the HPA axis may be a 'predictive adaptive response' (PAR): a form of adaptive developmental plasticity where the advantage of the induced phenotype is manifested in a future life-history stage. Further, we introduce a new term to define the condition-driven post-natal plasticity of the HPA axis to an unpredictable post-natal environment, namely a 'reactive adaptive response' (RAR). This study confirms that the quality of both the pre- and post-natal developmental environment can be a significant source of variation in the responsiveness of the HPA axis, and provides a frame-work for examining ecologically-relevant sources of stress-induced programming and plasticity in this endocrine system in a free-living vertebrate, respectively. (C) 2008 Elsevier Inc. All rights reserved.
Back to previous page
 

Please send suggestions for improving this publication database to sass-support@sfu.ca.
Departmental members may update their publication list.