Models of Selection, Isolation, and Gene Flow in Speciation


Back to previous page
Authors: Hart, MW
Year: 2014
Journal: Biological Bulletin 227: 133-145  PubMed
Title: Models of Selection, Isolation, and Gene Flow in Speciation
Abstract: Many marine ecologists aspire to use genetic data to understand how selection and demographic history shape the evolution of diverging populations as they become reproductively isolated species. I propose combining two types of genetic analysis focused on this key early stage of the speciation process to identify the selective agents directly responsible for population divergence. Isolation-with-migration (IM) models can be used to characterize reproductive isolation between populations (low gene flow), while codon models can be used to characterize selection for population differences at the molecular level (especially positive selection for high rates of amino acid substitution). Accessible transcriptome sequencing methods can generate the large quantities of data needed for both types of analysis. I highlight recent examples (including our work on fertilization genes in sea stars) in which this confluence of interest, models, and data has led to taxonomically broad advances in understanding marine speciation at the molecular level. I also highlight new models that incorporate both demography and selection: simulations based on these theoretical advances suggest that polymorphisms shared among individuals (a key source of information in IM models) may lead to false-positive evidence of selection (in codon models), especially during the early stages of population divergence and speciation that are most in need of study. The false-positive problem may be resolved through a combination of model improvements plus experiments that document the phenotypic and fitness effects of specific polymorphisms for which codon models and IM models indicate selection and reproductive isolation (such as genes that mediate sperm-egg compatibility at fertilization).
Back to previous page
 

Please send suggestions for improving this publication database to sass-support@sfu.ca.
Departmental members may update their publication list.