Authors: | Hurteau, LA; Mooers, AO; Reynolds, JD; Hocking, MD |
Year: | 2016 |
Journal: | Ecology 97: 450-460 Article Link (DOI) |
Title: | Salmon nutrients are associated with the phylogenetic dispersion of riparian flowering-plant assemblages |
Abstract: | A signature of nonrandom phylogenetic community structure has been interpreted as indicating community assembly processes. Significant clustering within the phylogenetic structure of a community can be caused by habitat filtering due to low nutrient availability. Nutrient limitation in temperate Pacific coastal rainforests can be alleviated to some extent by marine nutrient subsidies introduced by migrating salmon, which leave a quantitative signature on the makeup of plant communities near spawning streams. Thus, nutrient-mediated habitat filtering could be reduced by salmon nutrients. Here, we ask how salmon abundance affects the phylogenetic structure of riparian flowering plant assemblages across 50 watersheds in the Great Bear Rainforest of British Columbia, Canada. Based on a regional pool of 60 plant species, we found that assemblages become more phylogenetically dispersed and species poor adjacent to streams with higher salmon spawning density. In contrast, increased phylogenetic clumping and species richness was seen in sites with low salmon density, with steeper slopes, further from the stream edge, and within smaller watersheds. These observations are all consistent with abiotic habitat filtering and biotic competitive exclusion acting together across local and landscape-scale gradients in nutrient availability to structure assembly of riparian flowering plants. In this case, rich salmon nutrients appear to release riparian flowering-plant assemblages from the confines of a low-nutrient habitat filter that drives phylogenetic clustering. |
Please send suggestions for improving this publication database to
sass-support@sfu.ca.
Departmental members may update their publication list.