Cryoelectron Microscopy Reconstructions of the Pseudomonas aeruginosa and Neisseria gonorrhoeae Type IV Pili at Sub-nanometer Resolution


Back to previous page
Authors: Wang, FB; Coureuil, M; Osinski, T; Orlova, A; Altindal, T; Gesbert, G; Nassif, X; Egelman, EH; Craig, L
Year: 2017
Journal: Structure 25: 1423-+   Article Link (DOI)
Title: Cryoelectron Microscopy Reconstructions of the Pseudomonas aeruginosa and Neisseria gonorrhoeae Type IV Pili at Sub-nanometer Resolution
Abstract: We report here cryoelectron microscopy reconstructions of type IV pili (T4P) from two important human pathogens, Pseudomonas aeruginosa and Neisseria gonorrhoeae, at similar to 8 and 5 angstrom resolution, respectively. The two structures reveal distinct arrangements of the pilin globular domains on the pilus surfaces, which impart different helical parameters, but similar packing of the conserved N-terminal alpha helices, alpha 1, in the filament core. In contrast to the continuous alpha helix seen in the X-ray crystal structures of the P. aeruginosa and N. gonorrhoeae pilin subunits, alpha 1 in the pilus filaments has a melted segment located between conserved helix-breaking residues Gly14 and Pro22, as seen for the Neisseria meningitidis T4P. Using mutagenesis we show that Pro22 is critical for pilus assembly, as are Thr2 and Glu5, which are positioned to interact in the hydrophobic filament core. These structures provide a framework for understanding T4P assembly, function, and biophysical properties.
Back to previous page
 


Departmental members may update their publication list.